Who was the greatest computer scientist ever lived?

Mudassir Ali
Feb 04, 2020 03:42 PM 0 Answers
Member Since Dec 2019
Subscribed Subscribe Not subscribe
Mudassir Ali
- Feb 04, 2020 03:42 PM

ALAN TURING [1912–1954]

Turing was one of the people who worked on the first computers. He was the first person to think of using a computer to do things that were too hard for a person to do. He created the Turing machine in 1936. The machine was imaginary, but it included the idea of a computer program.

Turing was interested in artificial intelligence. He proposed the Turing test, to say when a machine could be called “intelligent”. A computer could be said to “think” if a human talking with it could not tell it was a machine.

He was highly influential in the development of theoretical computer science, providing a formalization of the concepts of algorithm and computation with the Turing machine, which can be considered a model of a general purpose computer . Turing is widely considered to be the father of theoretical computer science and artificial intelligence.

During the Second World War, he worked for the Government Code and Cypher School (GC&CS) at Bletchley Park, Britain’s codebreaking centre that produced Ultra intelligence. For a time he led Hut 8, the section which was responsible for German naval cryptanalysis. Here he devised a number of techniques for speeding the breaking of German ciphers, including improvements to the pre-war Polish bombe method, an electromechanical machine that could find settings for the Enigma machine. Turing played a pivotal role in cracking intercepted coded messages that enabled the Allies to defeat the Nazis in many crucial engagements, including the Battle of the Atlantic, and in so doing helped win the war.

Counterfactual history is difficult with respect to the effect Ultra intelligence had on the length of the war, but at the upper end it has been estimated that this work shortened the war in Europe by more than two years and saved over fourteen million lives.

After the war, he worked at the National Physical Laboratory, where he designed the ACE, among the first designs for a stored-program computer. In 1948 Turing joined Max Newman’s Computing Machine Laboratory at the Victoria University of Manchester, where he helped develop the Manchester computers and became interested in mathematical biology.

Major Contributions :

In 1936, Turing published his paper “On Computable Numbers, with an Application to the Entscheidungsproblem” (1936). In this paper, Turing reformulated Kurt Gödel’s 1931 results on the limits of proof and computation, replacing Gödel’s universal arithmetic-based formal language with the formal and simple hypothetical devices that became known as Turing machines. The Entscheidungsproblem (decision problem) was originally posed by German mathematician David Hilbert in 1928. Turing proved that his “universal computing machine” would be capable of performing any conceivable mathematical computation if it were representable as an algorithm. He went on to prove that there was no solution to the decision problem by first showing that the halting problem for Turing machines is undecidable: It is not possible to decide algorithmically whether a Turing machine will ever halt.
In June 1938, he obtained his PhD from Princeton; his dissertation, Systems of Logic Based on Ordinals, introduced the concept of ordinal logic and the notion of relative computing, where Turing machines are augmented with so-called oracles, allowing the study of problems that cannot be solved by Turing machines. John von Neumann wanted to hire him as his postdoctoral assistant, but he went back to England.
During the Second World War, Turing was a leading participant in the breaking of German ciphers at Bletchley Park. The historian and wartime codebreaker Asa Briggs has said, “You needed exceptional talent, you needed genius at Bletchley and Turing’s was that genius.” From September 1938, Turing had been working part-time with the GC&CS, the British codebreaking organisation. He concentrated on cryptanalysis of the Enigma with Dilly Knox, a senior GC&CS codebreaker. Soon after the July 1939 Warsaw meeting at which the Polish Cipher Bureau had provided the British and French with the details of the wiring of Enigma rotors and their method of decrypting Enigma code messages, Turing and Knox started to work on a less fragile approach to the problem.
By using statistical techniques to optimise the trial of different possibilities in the code breaking process, Turing made an innovative contribution to the subject. He wrote two papers discussing mathematical approaches, titled The Applications of Probability to Cryptography and Paper on Statistics of Repetitions, which were of such value to GC&CS and its successor GCHQ that they were not released to the UK National Archives until April 2012, shortly before the centenary of his birth.
Within weeks of arriving at Bletchley Park, Turing had specified an electromechanical machine that could help break Enigma more effectively than the Polish bomba kryptologiczna, from which its name was derived. The bombe, with an enhancement suggested by mathematician Gordon Welchman, became one of the primary tools, and the major automated one, used to attack Enigma-enciphered messages.
Turing decided to tackle the particularly difficult problem of German naval Enigma “because no one else was doing anything about it and I could have it to myself”. In December 1939, Turing solved the essential part of the naval indicator system, which was more complex than the indicator systems used by the other services
Turing travelled to the United States in November 1942 and worked with US Navy cryptanalysts on the naval Enigma and bombe construction in Washington; he also visited their Computing Machine Laboratory in Dayton, Ohio.During this trip, he also assisted at Bell Labs with the development of secure speech devices. He returned to Bletchley Park in March 1943. During his absence, Hugh Alexander had officially assumed the position of head of Hut 8, although Alexander had been de facto head for some time (Turing having little interest in the day-to-day running of the section). Turing then became a general consultant for cryptanalysis at Bletchley Park.

Statue of Turing by Stephen Kettle at Bletchley Park, commissioned by Sidney Frank, built from half a million pieces of Welsh slate.

Alan Turing is credited with designing the first computer chess program in 1953. Turing first worked on the algorithm in 1948. The program did not run on a computer; Turing “ran” the program by flipping through the pages of the algorithm and carrying out its instructions on a chessboard. According to Garry Kasparov, Turing’s program “played a recognizable game of chess.
Private life

In 1941, Turing proposed marriage to Hut 8 colleague Joan Clarke, a fellow mathematician and cryptanalyst, but their engagement was short-lived. After admitting his homosexuality to his fiancée, who was reportedly “unfazed” by the revelation, Turing decided that he could not go through with the marriage. Turing was a homosexual man. In 1952, he admitted having had sex with a man in England. At that time, homosexual acts were illegal. Turing was convicted. He had to choose between going to jail and taking hormones to lower his sex drive. He decided to take the hormones.

After his punishment, he became impotent. He also grew breasts.The treatment forced on him is now believed to be very wrong. It is against medical ethics and international laws of human rights. In August 2009, a petition asking the British Government to apologise to Turing for punishing him for being a homosexual was started. The petition received thousands of signatures. Prime Minister Gordon Brown acknowledged the petition. He called Turing’s treatment “appalling”In May 2012, a private member’s bill was put before the House of Lords to grant Turing a statutory pardon. In July 2013, the government supported it. A royal pardon was granted on 24 December 2013.The Alan Turing law is now an informal term for a 2017 law in the United Kingdom that retroactively pardoned men cautioned or convicted under historical legislation that outlawed homosexual acts.


In 1954, after suffering for two years, Turing died from cyanide poisoning. The cyanide came from either an apple which was poisoned with cyanide, or from water that had cyanide in it. The reason for the confusion is that the police never tested the apple for cyanide.

It is also suspected that he committed suicide.

Theories for death:-

Andrew Hodges and another biographer, David Leavitt, have both suggested that Turing was re-enacting a scene from the Walt Disney film Snow White and the Seven Dwarfs (1937), his favourite fairy tale, both noting that (in Leavitt’s words) he took “an especially keen pleasure in the scene where the Wicked Queen immerses her apple in the poisonous brew.
He suggests an alternative explanation for the cause of Turing’s death, this being the accidental inhalation of cyanide fumes from an apparatus for electroplating gold onto spoons, which uses potassium cyanide to dissolve the gold. Turing had such an apparatus set up in his tiny spare room. Copeland notes that the autopsy findings were more consistent with inhalation than with ingestion of the poison. Turing also habitually ate an apple before bed, and it was not unusual for it to be discarded half-eaten.
There is a saying in Computer Science world about Turing that had he not been punished for homosexuality which resulted in subjecting him to suicide, the Computer Science field would have been far more explored and developed by him. He was Einstein of Computer Science world.

Reply on This
Replying as Submit
0 Subscribers
Submit Answer
Please login to submit answer.
0 Answers